
Tankerino
AI lawnmower

Department of Theoretical and Applied Science (DiSTA)
Master’s degree in computer science
Thesis Advisor: Dott. Gallo Ignazio 
Candidate: Francesco Belloni 
Matricula: 725676 



What is the most boring task you have to 
do in the garden?

Cutting the grass



Tankerino

The idea for this project arises because current lawnmowers use:

o a perimeter wire (staying on the mowing area)

o random movements (are not efficient)

This project intends to build an autonomous 
lawnmower prototype. 

1) the robot should use its sensors to navigate the 
area with no user input

2) mowing as much of the field as possible 

3) avoiding obstacles and staying in the right area



Autonomous systems need to travel the 
world on their own

• What does the world look like?

• Where am I?

• Where to go?



Sensors external

Two DC motors with encoder
Camera

Lidar
Stepper motor
Relè

5 ultrasonic distance sensors

Moving

Avoid obstacles

1 - What does the world look like?



Sensors internal
Bosh BNO055
• A compass
• An accelerometer 

GPS
Raspberry Pi 

Two Arduino H-bridge

1 - What does the world look like?



Odometry
It estimates the robot trajectory incrementally, step after step. 

newstate = oldstate + last measurement 

The drawback of odometry is the accumulation of errors. 

The robot’s position becomes less accurate as the distance travelled by the robot 
increases.

2 – Where am I?

The robot can do two types of 
movements

(F) follow a straight line

(R) rotate

(F) follow a straight line = motor encoder



Vehicle Description and Mathematical Model
(R) rotate

2 – Where am I?



Navigation Subsystem 3 – Where to go?

1. identifies the start point A and the end point B
2. describe and control the movement from A to B



Map and shortest path
Grid-based map: This map is used to represent the environment where the robot acts. Each px of the 
map represents a square in the real world. The default resolution is 10 cm, so a px in the map represents 
a 10x10cm square. 
While each cell: 255 different values the underlying structure that it uses can represent 3:
• Free
• Occupied
• Unknown

3 – Where to go?



Software Implementation 

110004000

2000

1500

Lines of code

Python Test Arduino User interface (JS)

Almost all the code was written from scratch. This choice allowed us to understand every 
aspect needed to build a robot. No specific frameworks or robotics libraries were used.
This framework is around 18.000 lines of code.



System Overview

Two blocks constitute the software system. 
One part is written for the Arduino microcontroller and mainly deals with sensors and 
motors. 
The second part runs on Raspberry PI, which manages everything else. Tracking system, 
robot goals, maps …. 

The user can easily communicate with the robot through a 
browser if they are both on the same LAN.



App.py - Program Overview
The architecture is based on the Observer Pattern. With this pattern, every class 
interested in an event, such as an Arduino message, will subscribe to it. 



Messages
Managing messages between Raspberry Pi and Arduino is not an easy task. 

Messages can:
- get lost from both Arduino and Raspberry Pi
- may also not be handled readily and accumulate in a queue
- error reading the message 

The message in this second implementation has a 
parameter, for example, right-50. 

Once the message has been received, Arduino will 
autonomously rotate 50 degrees to the right. For 
each message received, Arduino sends a NAK or an 
ACK message if it was able to decode it. 

Each message has a unique ID. When Arduino 
responds to a command, this ID is reported. The 
program can understand if the command was 
executed.



AI

In this thesis two different strategies are tested. An interface was therefore 
created that allows you to easily change the main algorithm and thus test both 
solutions.

 Grid based coverage path planning

 e-star: An Online Coverage Path Planning Algorithm



Grid based coverage path planning
The algorithm that deals cover the area the map is divided into three parts.

1- Potential Map

This map is for helping to plan the next goal. The idea behind this map is to divide the cells into: 

• cells not visited: which have a lower potential. 

• cells already visited: which have a higher potential than cells not visited 

• obstacles: which have zero potential and are, therefore, not reachable

To avoid zig zags the map is divided as if it were a chessboard.

The potential correlates to the y-axis. The further away you 
get from the origin, the more the potential increases. The 
origin is in the upper left corner.



Grid based coverage path planning
2- Plan Trajectory

The robot starts on the left side then tries to reach the right side. Once the goal is achieved, a new 
one is calculated incrementing the "y" value. The robot will continue to go from right to left. 

In these constant movements, the robot is encouraged to travel through unexposed 
cells, which have the lowest potential. 

The a-star algorithm is used to calculate the path between the starting point and the 
goal. 



Grid based coverage path planning

To convert the path into robot movements, the CarrotCasing class was written

3- Calculation of Trajectory: CarrotCasing

The robot needs about 11 cm to make a curve. We must 
therefore calculate this space when we carry out the 
conversion.

In the image, you can see the points that the robot must reach.
The red dot after the curve indicates where the robot should be 
after turning.

To avoid deviations due to 
uneven ground after many 
tests it was decided to 
advance a maximum of 40 
cm at a time.



e-star: An Online Coverage Path Planning 
Algorithm

Briefly the algorithm is based on the Multiscale Adaptive Potential Surfaces (MAPS) model. 
It starts from the construction a tilling T on a map M. 

This algorithm is also based on the concept of potential.

The information taken from ε cells are packed into a single cell. " ε" is the parameter needed 
for this algorithm.

A cell can be visited, empty or contains an obstacle.



e-star
Connect the cells that have the lowest potential.

2) Find the sequence of waypoints



e-star Calculation of Trajectory: Connect Middle Points 

Starting position

Calculate the Dubins path
Between pairs of points

Find the intersection between the connecting line of the centers
of 2 consecutive waypoints



e-star
Finally, the Dubins path movements are converted into robot 
movements.



1. draw the two circumferences 
tangent to the starting and end point.

2. identify the tangent of the two circumferences

3. Identify the Dubins path

Algorithm

start

end

Trajectory: Dubins path

In geometry, the term Dubins path typically refers to the shortest curve that connects two points in the two-
dimensional Euclidean plane with a constraint on the curvature of the path and with prescribed initial and 
terminal tangents to the path, and an assumption that the vehicle traveling the path can only travel forward.



Arduino

Two mega Arduino are used in this project. 

Arduino master does practically all the work required to be able to command a 
rover. Among his tasks, we find: 

• Read the commands that come from Raspberry Pi 

• Read the sensor values 

• Go forwards and backwards or turn according to the command 

• Balance the speed to try to go straight 

• Communicate with Raspberry Pi and send the collected data.



User Interface
To allow the dialogue between the application running in the robot and the user, two simple web 
pages have been created. These allow you to start the mission and check its progress.

New Map

This page offers the user three choices: 

• Create a new map 

• Load an old map (from disk)

• Upload a custom map

If you want to create a new map, you can specify both 
the length and the height. Another customizable aspect 
is the resolution, by default set at 10cm = 1px



User Interface
Dashboard 
This page allows to control the robot and shows all the actions made by the robot. 
There are several maps: obstacles map, trajectory map, visited map and potential map.
The robot can run manual and automatic.
In the UI, the buttons allow driving the robot manually.

There is a polling timer set to 1s. The web server responds with all updated information in a JSON format. This 
information contains, for example: the last command sent, plan strategy, update map, ... 



Mower Simulator
To speed up development times and to be able to debug the code, a robot simulator was 
created. The simulator receives the commands and moves the robot virtually on the map. 
All sensors are simulated to provide adequate response messages. A fundamental 
parameter is the amount of noise present in the data collected by the sensor to be able to 
obtain sufficiently robust algorithms. 



Software Implementation

At the end of the mission, it is possible to 
analyse the robot's behaviour and choices made.

 Mission Analysis: Report

 Mission Analysis: Telemetry

 Logs



Simulation and Experiments
The simulations can be classified in two different categories: 

• Ideal Mower: AI without any imperfection: useful to validate the 
implemented algorithms. 

• Realistic Mock: the messages and responses are generated by 
the simulator

The results of these experiments are encouraging, the 
strategy cover almost the complete keeping the length of 
the path close to the lower limit. 



Experiments on the Field
Initially, we started with a simple map 5 meters by 3 meters with no obstacles



Experiments on the Field

https://www.youtube.com/watch?v=Bv_9Sx9DnPg



Measures

 The first operation carried out was to check that the formulas used in the 
simulator are corrected.

It was necessary to find the correlation between the motor tics 
and the cm travelled by the robot.



1 - Maintaining Straight Path 
and Executing 180° Turn

1. Run the vehicle for four meters, in ten steps of 40cm

2. Make a 180 degree turns on the spot 

3. Return to the starting area

4. Compare the actual position with the calculated one.

 The experiment is running four times. The result is the following graph:

As result the encoders behave quite accurately.



2 - Obstacle detection
Another early experiment was recognizing obstacles and then deflecting strategy 
accordingly. To recognize obstacles, the robot could use in this experiment the ToF (Time 
of Flight) LiDAR 

A wooden panel is placed at 160 cm, which simulates the obstacle to be overcome. The 
following photo is taken by the camera mounted on the robot. 

The panel can be clearly recognized in the image, the scanner works well. The lidar 
sensor is not perfect and introduced some noise. This problem will have to be solved in 
the future.



Comparison of implemented AI-Algorithms
For the final experiment, we compare the result of the two developed in the 
simulation and with the real robot. The experiments are carried out on an empty 
map and on a map with an obstacle.



Comparison of implemented AI-Algorithms

The two algorithms developed are very different from each other.

 E-star is much more innovative when it comes to handling complicated map 
situations. Its purpose is to visit the map as quickly as possible by optimizing 
the route. 

 On the other hand, the ”Grid-based coverage path planning” algorithm is 
much simpler as it tries to go from left to right in the map until it is 
completely covered.



empty map - simulation

Grid-based coverage path planning E-star

In the simulation, both algorithms do a great job visiting over 80% of the area.



Gridbase - empty map – real mower

In the field the real robot worked for about 35 minutes, 
travelled about 60 meters.

These are the data that can be read from the report.



Gridbase - empty map – real mower
In these maps, it’s possible to see how the noise added by 
the lidar makes the robot change its trajectory.



Gridbase - empty map – real mower
The map is all explored



Gridbase - empty map – real mower
About 30 percent of the map is visited.



Gridbase – map with an obstacle – real mower

In the map with an obstacle, the 
result is practically comparable.



Conclusions

The project goals were not fully achieved. Nevertheless, the final result is 
remarkable. 

The mower can perform up to 20 minutes an optimal way. During those 20 minutes, 
the robot visited 30% of the total area without going out of the edges or hitting any 
obstacle. But then the sum of many minor errors affects the robot’s location. 

After about 20 minutes and up to about 30 minutes, it is possible to see some 
localisation errors, which could still be considered acceptable. After approximately 30 
minutes, the robot begins to exit the test area. 

This problem, well known in the literature, can be avoided by implementing SLAM 
techniques. The cheap and not always accurate sensors increase the problem of 
localization. 

Writing all the code forces us to deal with many obstacles. For example, there were 
both software problems and hardware difficulties. Building a robot framework was not 
easy; real-time applications are usually complicated. 



The future works 
 The future works to be implemented are using a SLAM algorithm and moving some part 

of the logic in Arduino to speed up the robot. 

 Another way forward to help the robot locate it could be the implementation of 
DenseDepth algorithms.



Thank you for your attention


