Tankermo

Al lawnmower

Department of Theoretical and Applied Science (DiSTA)
Master’s degree in computer science

Thesis Advisor: Dott. Gallo Ighazio

Candidate: Francesco Belloni

Matricula: 725676

What is the most boring task you have to
do in the garden?

Cutting the grass

Tankerino

This project intends to build an autonomous
lawnmower prototype.

1) the robot should use its sensors to navigate the
area with no user input

2) mowing as much of the field as possible

3) avoiding obstacles and staying in the right area

The idea for this project arises because current lawnmowers use:
o a perimeter wire (staying on the mowing area)

o random movements (are not efficient)

Autonomous systems need to travel the
world on their own

* Where am I?

* Where to go?

Sensors external 1 - What does the world look like?

Moving

Camera

Two DC motors with encoder

Lidar
Stepper motor
Rele

5 ultrasonic distance sensors

Sensors internal - What does the world look like?
Bosh BNOO55

« A compass
 An accelerometer

Raspberry Pi
H-bridge

Two Arduino

CEEEER Ty

Odometry

It estimates the robot trajectory incrementally, step after step.
newstate = oldstate + last measurement
The drawback of odometry is the accumulation of errors.

The robot’s position becomes less accurate as the distance travelled by the robot
increases.

Y a The robot can do two types of
movements

New robot pose

(F) follow a straight line
As® ¢

(R) rotate

Odometry ,

increment: .~ !
B |

odo x
AZ
Previous robot pose

(F) follow a straight line = motor encoder

Vehicle Description and Mathematical Model
(R) rotate

1 def __turn(self, command_sent, theta_msg_grad) —> Position:

3 # == §#

3 if command_sent =— HttpCommand .RIGHT :

4 # == |}

5 theta_msg._rad = math.fabs(math.radians(theta_msg_grad))

6 center_of rotation = self.get_right_center_of_rotation ()

7 ¢ = self.get_current_position().clone() — center_of_rotation
8 return c.clone ()

9 .rotate (theta_msg_rad)

10 .translate (center_of_rotation)

3 - Where to go?

Navigation Subsystem

1. identifies the start point A and the end point B
2. describe and control the movement from A to B

20 \ g, 4

]
e
S 1 it ':-__.
60 { = }'-1 g . b i
.

so{| & S o—"
100 - ¢ : | o

120 1 o - N L

. * .
140 {0 L wne
:"_ e g e

T T - l' T
0 50 100 150 200

Map and shortest path 3 - Where to go?

Grid-based map: This map is used to represent the environment where the robot acts. Each px of th\e
map represents a square in the real world. The default resolution is 10 cm, so a px in the map represen\ts
a 10x10cm square.

While each cell: 255 different values the underlying structure that it uses can represent 3:
* Free

* Occupied

* Unknown

Software Implementation

\

Almost all the code was written from scratch. This choice allowed us to understand every \
aspect needed to build a robot. No specific frameworks or robotics libraries were used.
This framework is around 18.000 lines of code.

Lines of code

=

= Python = Test = Arduino = User interface (JS)

System Overview

Two blocks constitute the software system.

One part is written for the Arduino microcontroller and mainly deals with sensors and
motors.

The second part runs on Raspberry Pl, which manages everything else. Tracking system,
robot goals, maps

The user can easily communicate with the robot through a
browser if they are both on the same LAN.

App.py - Program Overview

The architecture is based on the Observer Pattern. With this pattern, every class
interested in an event, such as an Arduino message, will subscribe to it.

1A

Socket(Arduino) App.py
< P
l—+ MessageManager
1——+ TrackingSystem
1—4 Map
-

Messages

Managing messages between Raspberry Pi and Arduino is not an easy task.

Messages can:

- get lost from both Arduino and Raspberry Pi

- may also not be handled readily and accumulate in a queue
- error reading the message

Process Arduino

The message in this second implementation has a
parameter, for example, right-50.
ID= 12 FORWARD:50

\ Once the message has been received, Arduino will :‘\\

autonomously rotate 50 degrees to the right. For
D=1 ACK MSGo12 each message received, Arduino sends a NAK or an
ACK message if it was able to decode it.

Each message has a unique ID. When Arduino
responds to a command, this ID is reported. The

Ip=REPORT MaG=1 program can understand if the command was

Al

In this thesis two different strategies are tested. An interface was therefore
created that allows you to easily change the main algorithm and thus test both
solutions.

» Grid based coverage path planning

» e-star: An Online Coverage Path Planning Algorithm

class AlGeneral (ABC):
This class model the general inside the Robot.

which receives information and send out commands
nny

def __init__(self obstacle.map, tracking system mower_status):
self. obstacle map: ObstacleMap = obstacle_map
self. tracking system: TrackingSystem = tracking system
self. mower_status: LawnMowerStatus = mower_status
self. _is_new_plan_trajectory_available: bool = False
self. _status = MowerStatus.IDLE
self. maps: List[LastMapAvailability| = []
#

w0 =] o s Wb e

TS U S R TR
o W = O

The algorithm that deals cover the area the map is divided into three parts.
1- Potential Map
This map is for helping to plan the next goal. The idea behind this map is to divide the cells intc
« cells not visited: which have a lower potential.
« cells already visited: which have a higher potential than cells not visited

« obstacles: which have zero potential and are, therefore, not reachable

To avoid zig zags the map is divided as if it were a chessboard.

The potential correlates to the y-axis. The further away you
get from the origin, the more the potential increases. The T T T T T T 1]
origin is in the upper left corner.

2- Plan Trajectory

The robot starts on the left side then tries to reach the right side. Once the goal is achieved, a new
one is calculated incrementing the "y" value. The robot will continue to go from right to left.

In these constant movements, the robot is encouraged to travel through unexposed
cells, which have the lowest potential.

The a-star algorithm is used to calculate the path between the starting point and the
goal.

Grid based coverage path planning

3- Calculation of Trajectory: CarrotCasing

To convert the path into robot movements, the CarrotCasing class was written

To avoid deviations due to
uneven ground after many
tests it was decided to
advance a maximum of 40
cm at a time.

v“\‘l

The robot needs about 11 cm to make a curve. We must
therefore calculate this space when we carry out the
conversion.

In the image, you can see the points that the robot must reach.
The red dot after the curve indicates where the robot should be
after turning.

e-star: An Online Coverage Path Planning
Algorithm

Briefly the algorithm is based on the Multiscale Adaptive Potential Surfaces (MAPS) model
It starts from the construction a tilling T on a map M.

This algorithm is also based on the concept of potential. »\

The information taken from € cells are packed into a single cell. " €" is the parameter neededx.‘
for this algorithm. |

A cell can be visited, empty or contains an obstacle.

Obstacle Map First Level Tilling

—
‘,___.._...-

Connect the cells that have the lowest potential.

2) Find the sequence of waypoints

—_— s — —>

E)<_<_<_

—— ——

Calculation of Trajectory: Connect Middle Points

Find the intersection between the connecting line of the centers

: Y of 2 consecutive waypoints
Starting position

4
9

T ART————

4 e

Calculate the Dubins path

O

Between pairs of points

Finally, the Dubins path movements are converted into robot
movements.

0
[}
0
¢

0
(o]

Trajectory: Dubins path

Algorithm

\
1. draw the two circumfere
tangent to the starting an

2. identify the tangent of the

\

3. ldentify the Dubins path
\

end

start

n geometry, the term Dubins path typically refers to the shortest curve that connects two
imensional Euclidean plane with a constraint on the curvature of the path and with pre
rminal tangents to the path, and an assumption that the vehicle traveling the path

Arduino

Two mega Arduino are used in this project.

Arduino master does practically all the work required to be able to command a
rover. Among his tasks, we find:

e Read the commands that come from Raspberry Pi

e Read the sensor values

e Go forwards and backwards or turn according to the command
e Balance the speed to try to go straight

e Communicate with Raspberry Pi and send the collected data.

User Interface

To allow the dialogue between the application running in the robot and the user, two simple web
pages have been created. These allow you to start the mission and check its progress.

New Map

This page offers the user three choices: _
Start a new project

e Create a new map

MName

es. Home

e Load an old map (from disk)
Width (meter)

» Upload a custom map es. 300

Height (meter)

es. 200
If you want to create a new map, you can specify both

the length and the height. Another customizable aspect Mag fesalutian oo pevpiey
is the resolution, by default set at 10cm = 1px 10

Star new project Fast new project

Dashboard

This page allows to control the robot and shows all the actions made by the robot.
There are several maps: obstacles map, trajectory map, visited map and potential map.
The robot can run manual and automatic.

In the Ul, the buttons allow driving the robot manually.

There is a polling timer set to 1s. The web server responds with all updated information in a JSO
information contains, for example: the last command sent, plan strategy, update map, ...

Oracle map

Plan Trajectory (1/5)

Commands Mode
Autopilot Load arduino messages
ON [Je/i3 m OFF
B S s
Map (map 6/43) Type Value
position: [ETETE theta: §EE3° magnetic Y
Connected Y& Visited (5/5) Potential Layer (5/5)
Server status RUNNING
Address hittpy//localhost:8080/
Command sent RUNNING_MODE_AUTOMATIC
1A Command 44) FORWARD: 18408

Lawn mower mode AUTOMATIC

Save map

Boon DD

Mower Simulator

To speed up development times and to be able to debug the code, a robot simulator was
created. The simulator receives the commands and moves the robot virtually on the map.
All sensors are simulated to provide adequate response messages. A fundamental
parameter is the amount of noise present in the data collected by the sensor to be able to
obtain sufficiently robust algorithms.

Qanon

class ArduinoMock

app.py . \
@‘ s read emNttedl messages
i " I InfiniteMegSagdQueue
—l \ﬂ read senjsor output

fid emitted messages
copand motor \

Motor SCIS0T

Send request for sensor and get response

example: obtacle in direction # from my position

class RaspberryPl

InfinijeMessageQueue ockSerial

tracking syster/ envirome

* distance obstable: 54 em

get Arduino status and calculate

real-time the position (z(t), y(t}s

\
¥
L F

Telemetry of the LawnMower

Software Implementation

Encoder Trajectory: 0.0 cm
| \ 50 4 | | : 1
20000 - 100
g 10000 i - §15°
& . —
.y . . ° | — wgn]| N
At the end of the mission, it is possible to oo V =1 | I o |=d |
analyse the robot's behaviour and choices made B s
304 ' 300 :
25 200 ’\/\l/
20 -——rsys 100 - :
.. . el V V
» Mission Analysis: Report gl 12 o Tl A
1.04 — BN_mag 8 100 - ‘ i ;
» Mission Analysis: Telemetry 05 2004 o
0.0 -300 4 — thetal
> Logs (IJ 500 1000 _](.!SIOO 2000 50600 100'000 150000 200I0002SOI000300I000 350000
message ¥

Tankerino report

Gridbase - empty map - simulation
Messages overview

Duration: 00:04:44 Messages sent 374 Message received 1141
Report 362 Ack 374 Nak 0

Count turn 49 Left 8 Right 41

The simulations can be classified in two different categories:

Simulation and Experiments o mmmmmm

[s 100 150 200 230

 Ideal Mower: Al without any imperfection: useful to validate the
implemented algorithms.

(a) random forest horizontal (75 x 75) (b) random forest vertical (75 x 753)

o Realistic Mock: the messages and responses are generated by
the simulator

T (a) (b) (C) (d)) Bush and wall (120 x 160) (d) geometric garden (120 x 160)
size THxT75 | 75x7T5 | 120 x 160 | 120 x 160
visited 4820 4820 16484 12783 (-8)
obstacle 805 805 2716 6409
visitable 4820 4820 16484 12791
length path 4836 4838 16580 13524
direction changes 220 223 548 972

Table 5.1: Results of the experiments to evaluate and improve the algorithm ¢*

The results of these experiments are encouraging, the
strategy cover almost the complete keeping the length of
the path close to the lower limit.

Experiments on the Field

Initially, we started with a simple map 5 meters by 3 meters with no obstacles

https://www.youtube.com/watch?v=Bv_95x9DnPg

Measures

» The first operation carried out was to check that the formulas used in the
simulator are corrected.

Wheel | ms id | planned cm | measured cm | json parameter | tick Left | tick Right | Mean |

5 10 10 6550 6804 6793 6798.5
7 10 9.8 6550 6876 6878 6877
11 20 19,5 13100 13461 13443 13452
13 20 19 13100 13450 13450 13450
15 20 18,7 13100 13426 13381 13403,5
T 40 38 26200 26587 26588 26587.5
19 40 37 26200 26485 26477 26481
21 40 36 26200 26572 26571 26571.5
27 a0 45,5 32750 33135 33142 33138.5
31 50 47 32750 32914 32906 32910
32 50 46 32750 32914 32906 32910
Turn end
4 T T T T T
3.5
3 -
I D
25|
3 L
& Ar
= 3
st
i tick
. . . | e ticks .
It was necessary to find the correlation between the motor tics ;| — Linear regression: | |
| - Quadratic Regression | |
and the cm travelled by the robot. NrdanueEe et R

1 | L L | L L
0 5 10 15 20 25 30 35 40 45 50 55
distance (em) (x

1 - Maintaining Straight Path
and Executing 180° Turn ®

1. Run the vehicle for four meters, in ten steps of 40cm

2. Make a 180 degree turns on the spot

3. Return to the starting area

4. Compare the actual position with the calculated one.

» The experiment is running four times. The result is the following graph:

As result the encoders behave quite accurately.

2 - Obstacle detection

Another early experiment was recognizing obstacles and then deflecting strategy “
accordingly. To recognize obstacles, the robot could use in this experiment the ToF (Time
of Flight) LiDAR

A wooden panel is placed at 160 cm, which simulates the obstacle to be overcome. The
following photo is taken by the camera mounted on the robot.

The panel can be clearly recognized in the image, the scanner works well. The lidar
sensor is not perfect and introduced some noise. This problem will have to be solved in
the future.

Comparison of implemented Al-Algorithms

For the final experiment, we compare the result of the two developed in the
simulation and with the real robot. The experiments are carried out on an empty
map and on a map with an obstacle.

Report name | Mode Map type Algorithm
1 simulator blank map grid based coverage path planning
2 simulator blank map e-star
3 simulator | map with obstacle | grid based coverage path planning
4 simulator | map with obstacle e-star
5 mower blank map grid based coverage path planning
6 mower blank map e-star
7 mower | map with obstacle | grid based coverage path planning
8 mower | map with obstacle e-star

The two algorithms developed are very different from each other.

E-star is much more innovative when it comes to handling complicated map
situations. Its purpose is to visit the map as quickly as possible by optimizing
the route.

On the other hand, the ”Grid-based coverage path planning” algorithm is
much simpler as it tries to go from left to right in the map until it is
completely covered.

Figure 5.12: The two images compare the two algorithms in the obstacle map in the simu-
lator.

empty map - simulation

In the simulation, both algorithms do a great job visiting over 80% of the area.

Grid-based coverage path planning E-star

Messages overview

Duration: 00:0444 Messages sent 374 Message received 1141 Duration: 00:04:59 Messages sent Message received
Report 362 Ack 374 Nak 0 Report in Ack 347 Nak 0
Count turn 49 Left 8 Right 41 Count turn 79 Left 36 Right 43
Count forward 254 meters: 98 Count alive 393 Count forward 163 meters: 57 Count alive 375
Count backwards 26 meters: 2 Count Stop 1 Count backwards 0 meters: 0 Count Stop 57
ot iz Algular votecion 2 Report Brror 0 Count scan 36 Angular correction 10 Report Error
L 100 '_
70 /
60 80 1
50 4
60
40 4
30 40
20+
20
10
0 04
.00 I 'Q% I '.\9 ‘ :11 I ‘.30' '.0“"I ‘33;‘.D‘kl ‘.03' :fal '.n'bl 91:5:1 I ‘.‘1 ;‘}0 Ih‘f" I o0 I,-\’Q .,'5" I|¢,’E‘,Q‘0 I_-f) '.‘5 '_Q\I_-v;‘ ‘,-5‘) ‘ _1,'5 '_30'_,15 .‘p,')l,g'll_-i}laﬁ '1:,‘.1
ST e T T e T Ve T e e V' IS A R A S S AN A AR AL S SRS

Gridbase - empty map - real mower

These are the data that can be read from the report.

Messages overview

Duration: 00:36:12 Messages sent 379 Message received 1308
Report 304 Ack 329 Nak 49
Count turn 87 Left 49 Right 38
Count forward 178 meters: 63 Count alive 611
Count backwards 38 meters: 4 Count Stop 3
Count scan 19 Angular correction 51 Report Error 0

In the field the real robot worked for about 35 minutes,
travelled about 60 meters.

Gridbase - empty map - real mower

Maps overview In these maps, it’s possible to see how the noise added by
the lidar makes the robot change its trajectory.

* 1l &G

: £ ﬁTsui o | Eéh&n-::’l -ﬁuimnd :% |

Gridbase - empty map - real mower

The map is all explored

id time unknown explored obstacle not set percentage

0 00:00:00 37500 0 0 0 39

2 000018 16546 20926 22 6 55

4 000040 13105 24356 18 21 64

6 000102 11041 26395 26 38 70 Explore map percentage

12 000202 7047 30377 28 48 81

36 00:05:21 3568 33818 1 103 90

73 00:10:02 1111 26264 2 123 96 =

316 003602 704 36639 4 153 97 ot
60 4
-

20 1

0,08 2% @, 0"4\0"1';“ ﬂb""ﬁ“b o %01':“‘1 o 19,2 o
P A AR S S S ""&r”’ga"’b

Gridbase - empty map - real mower

About 30 percent of the map is visited.

Visited map percentage

40 -
3{) -
20
10 <
i ID Time visited not visited percentage
o o ,@9 " o E o 1 00:00:00 0 37496 4 0
o o o o o 10 00:03:46 3610 33886 4 9
20 00:06:30 5588 31908 4 14
30 00:13:33 10971 26525 4 29
40 00:23:28 12514 24982 4 33
50 00:31:40 14160 23336 4 37
56 00:35:04 16075 21421 4 42

Gridbase - map with an obstacle - real mowe

Messages overview

Duration: 00:36:12 Messages sent 379 Message received 1308
Report 304 Ack 329 Nak

Count turn a7 Left 49 Right

Count forward 178 meters: 63 Cour* =+

Count backwards 38 meters: 4 Cour

Count scan 19 Angular correction 51 Repc

In the map with an obstacle, the
result is practically comparable.

Conclusions

The project goals were not fully achieved. Nevertheless, the final result is
remarkable.

The mower can perform up to 20 minutes an optimal way. During those 20 minutes,
the robot visited 30% of the total area without going out of the edges or hitting any
obstacle. But then the sum of many minor errors affects the robot’s location. \

After about 20 minutes and up to about 30 minutes, it is possible to see some
localisation errors, which could still be considered acceptable. After approximately 30
minutes, the robot begins to exit the test area.

This problem, well known in the literature, can be avoided by implementing SLAM \
techniques. The cheap and not always accurate sensors increase the problem of |
localization.

Writing all the code forces us to deal with many obstacles. For example, there were
both software problems and hardware difficulties. Building a robot framework was not
easy; real-time applications are usually complicated.

The future works

» The future works to be implemented are using a SLAM algorithm and moving some part
of the logic in Arduino to speed up the robot.

» Another way forward to help the robot locate it could be the implementation of
DenseDepth algorithms.

Figure 6.2: Result of the image with a Dense Depth algorithm taken by the robot camera.
The program can detect the obstacle by its different colours.

Thank you for your attention

